

Open Architecture Controls: The Key to Interoperability

John M. Evans

Chief, Intelligent Systems Division

Manufacturing Engineering Laboratory

National Institute of Standards and Technology

Interoperability Costs

- Installed robot systems cost 3 to 5 times the amount of the robot
- Software integration costs are at least 25% of total; much of that cost could be avoided with appropriate standards
- Aerospace manufacturing cell with \$10M in capital equipment takes 100 person-years to integrate

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Interoperability

• User's Perspectives: Seamless data flow, plug & play
Heterogeneous environment

• Vendor's Perspectives: External interfaces

Market control

• Third Party Perspectives: Modular commonality

Clean interfaces

Interfaces exist within an architecture

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

NIST Intelligent Open Architecture Controls Program

- GOAL: To provide measurements and standards needed to support a competitive market in intelligent control technology for the discrete parts manufacturing sector.
 - Performance measures
 - Architectures and interface standards
 - Validation and conformance tests

User Groups Are Driving Toward Standardization

- Three key industry segments: machine tools, robotics, measurement equipment
 - Open Modular Architecture
 Controller (OMAC) for machine tools
 - Robotic Industries Association
 (RIA) for robotics
 - Metrology Automation Association (MAA) for measurement equipment

 Common theme: bring users and vendors together to work toward standardization

NIST's Roles: Testing and Validation

- We participate in standards projects, e.g., STEP/NC for machine tool programming, DMIS and AP219 for inspection, AWS A9, and RIA R15
- We set up testbeds to prove out standards
- We develop test suites that enable users and vendors to verify compliance to specifications
- Program information, workshop proceedings, and links to further information can be found at:
 - www.isd.mel.nist.gov/projects/openarch

NIST OAC Testbeds

- Existing
 - Parallel kinematic machine tool
 - Enhanced machine control (NGC, TEAM, OMAC)
 - Welding cell interoperability (with AWS)
- Planned
 - Metrology Automation (with MAA)
 - Single Axis OMAC (with OMAC)
 - STEP/NC (with ISO, Step Tools, OMAC,...)

Open Architecture Controls for Industrial Robots

- 1999 Robotics Industry Forum
- February workshop, Orlando
- June workshop, Ypsilanti
- November workshop (postponed)

Vendor Position

- OMAC Component-based software architecture does not make sense for industrial robots
- Open Architecture for industrial robots means interoperability

Vendor Position

- PC augmented architecture
- External interfaces that are valid subjects for standardization:
 - Factory Data Network interface
 - Peripheral interfaces
 - Graphical Display Interface

Target Interfaces

Factory Data Networks

- GM has up to 6 or 7 different networks
- Three level data networks:
 - Ethernet
 - Controlnet
 - Devicenet
- Moving to two
 - Switched ethernet
 - Devicenet

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Switched Ethernet

EtherNet / IP !!!

Control and Information Protocol (CIP) -An Object Orientated Application Layer Protocol O P E N

GM "First Wave" Proposal for Robot Interface Standards

Leverage the Existence and Volumes of Marketplace Technology Standards

		Current	Emerging
Communications	Media	Copper-CAT5/CAT6	CAT6
		Fiber Single & Multi Mode	Fiber Single & Multi Mode
	Communications Protocol	TCP-RFC 793	TCP-RFC 1122
		IPv4-RFC791,1122,1812	PV6,PSECROF1825-7
	Event Management	SNMP - RFC 1901-10	SNMPw/MIBII-RFC 1213,1157
Operator Presen	tGaratpiroicos	Browser (IE, Netscape)	Browser (IE, Netscape)
	Character	Browser	Browser
Network Services	Setting Common Time	NTP-RFC997	NIP-RFC1119
	Network Management.	SNMP	SNMPw/MBII
	Data Representation	ЖL	XMLXSLE08879&W3CXML/I
	Development	JAVA / C++ / GNU	JAVA / GNU

Action Plan

- Gather potential standards
- Collect field experience
- Prioritize
- Develop implementation plans
- Launch testing

Future

- Peripheral Interface Standards
- Graphical Display Interface Standards